
Middle East Technical University

Informatics Institute

PathFinder

An Intelligent Algorithm for MCDC Test-Path Generation

Advisor Name: ALTAN KOÇYİĞİT

(METU)

Student Name: İsmail ŞİMŞEKOĞLU

(Software Management)

January 2024

TECHNICAL REPORT

METU/II-TR-2024

i

Orta Doğu Teknik Üniversitesi

Enformatik Enstitüsü

MCDC Test-Yolu Oluşturmak için Akıllı Bir Algoritma:

PathFinder

Danışman Adı: Altan KOÇYİĞİT

(ODTÜ)

Öğrenci Adı: İsmail ŞİMŞEKOĞLU

(Yazılım Yönetimi)

Ocak 2024

TEKNİK RAPOR

ODTÜ/II-TR-2024-

ii

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Internal Use) 2. REPORT DATE

25.01.2024

3. TITLE AND SUBTITLE

PathFinder An Intelligent Algorithm for MCDC Test-Path Generation

4. AUTHOR (S)

İsmail ŞİMŞEKOĞLU

5. REPORT NUMBER (Internal Use)

1. METU/SM-TR-2024-

6. SPONSORING/ MONITORING AGENCY NAME(S) AND SIGNATURE(S)

Software Management Master’s Programme, Department of Information Systems, Informatics Institute,

METU

Advisor: Altan KOÇYİĞİT Signature:

7. SUPPLEMENTARY NOTES

8. ABSTRACT

Introducing Pathfinder, an innovative automated tool designed for generating comprehensive test cases in the

realm of C language source codes. The primary objective is to fulfill Modified Condition/Decision Coverage

(MC/DC) criteria, and Pathfinder follows a meticulously crafted methodology. The process unfolds in

structured phases, commencing with source code parsing, advancing to the creation of a Control Flow Graph

(CFG), and culminating in the systematic generation of test paths along with the determination of potential

expected results.

Python, a widely used language known for its parsing capabilities and robust libraries, equips Pathfinder to

tackle the inherent challenges presented by the intricacies of C language syntax. The project's emphasis on

safety-critical industries, such as automotive and aerospace, aligns with the prevalent use of C in these

sectors. The report provides a comprehensive exploration of each phase, from foundational source code

parsing to the crucial role of identifying expected results in software testing.

Pathfinder's implementation encounters challenges, duly acknowledged and addressed in the report. These

include complexities inherent in C language, parsing intricacies, scalability concerns with large codebases,

and performance limitations of Python.

The report concludes with a forward-looking perspective on Pathfinder's future evolution. Envisaged

enhancements involve broadening language feature support, incorporating external function analysis for

more accurate predictions, and exploring the integration of machine learning algorithms. These strides aim

to position Pathfinder as a versatile and refined tool adept at addressing the dynamic landscape of software

development and testing practices.

9. SUBJECT TERMS

Software Testing, MC/DC Coverage, Control Flow Graph, Test-Path

10. NUMBER OF PAGES

36

iii

TABLE OF CONTENT

LIST OF FIGURES ... v

LIST OF ABBREVIATIONS ... vi

CHAP ... 1

INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Objectives .. 2

1.3 Scope ... 3

1.4 Methodology ... 3

BACKGROUND INFORMATION .. 5

2.1 Definitions ... 5

2.1.1 Statement Coverage .. 5

2.1.2 Decision Coverage ... 5

2.1.3 MC/DC ... 6

2.1.4 Control Flow Graph ... 7

2.1.5 Abstract Syntax Tree ... 7

RELATED WORKS .. 9

3.1 Validating Object-Oriented Software At The Design Phase By Achieving MC/DC

(Barisal, 2019): .. 9

3.2 MCDC-Star A White-Box Based Automated Test Generation For High MC/DC

Coverage (Wong, 2018): ... 10

3.3 Automatic Test Data Generation For Unit Testing To Achieve Mc/Dc Criterion

(Tianyong Wu, 2014): ... 11

3.4 An Automated Tool for MC/DC Test Data Generation (Ariful Haque, 2014): 11

3.5 Comparing Pathfinder With Related Works ... 12

3.5.1 Validating Object-Oriented Software at the Design Phase (Barisal, 2019): 13

3.5.2 MCDC-STAR (Wong, 2018): .. 13

3.5.3 Automatic Test Data Generation for Unit Testing (Tianyong Wu, 2014): 13

3.5.4 Automated Tool for MC/DC Test Data Generation (Ariful Haque, 2014): 14

PATHFINDER ... 15

iv

4.1 Parse Source Code ... 15

4.2. Create Control Flow Graph ... 17

4.3 Identify Decisions and Conditions ... 19

4.4 Generate Test Paths .. 20

4.5. Find Expected Results ... 22

4.6. Summary Of Pathfinder Process ... 24

4.7. Challenges of Pathfinder ... 25

CONCLUSION AND FUTURE WORK .. 26

References .. 28

v

LIST OF FIGURES

Figure 1 The Outline of PathFinder .. 4
Figure 2 MC/DC Example .. 6
Figure 3 ParseSource – Parsing Algorithm ... 16
Figure 4 ControlFlowGraph: CFG Generation Algorithm ... 18
Figure 5 DecisionIdentifier: Decision Identifying Algorithm .. 20
Figure 6 TestPathGenerator: Test Path Generation Algorithm.. 21
Figure 7 ExpectedResultGenerator: Expected Result Algorithm ... 23

vi

LIST OF ABBREVIATIONS

AST Abstract Syntax Tree

CFG Control Flow Graph

CLTP Condition Level Test Paths

MC/DC Modified Condition/Decision Coverage

PBO Pseudo-Boolean Optimization

UML Unified Model Language

XSD XML Schema Definition

1

CHAPTER 1

CHAP

INTRODUCTION

1.1 Motivation

Testing code for correctness and reliability is among the important tasks of software

engineers. However, it can be challenging a time consuming to achieve Modified

Condition/Decision Coverage (MC/DC) standards for testers. Selecting test parameters

and expected values that fulfill the MC/DC criteria is usually a tedious and error-prone

process, leading to significant resource consumption.

In order to address this challenge, there is a need to create an algorithm that can automate

the process of finding test parameters and expected values that satisfy MC/DC coverage.

Automating this process will allow to reduce the time and resources required for testing

significantly while increasing the effectiveness and reliability of the test suites at the same

time.

An algorithm that can automate this process is sought by many software test engineers

and could be a valuable tool, allowing them to achieve their testing goals quickly and

efficiently. With this, software testing engineers will be able to focus their attention on the

more important aspects of software development while relying on automation to handle

the tedious and time-consuming tasks associated with software testing.

MC/DC analysis is an important aspect of safety-critical software development. Safety-

critical systems, such as those used in aerospace, automotive, and medical industries, must

meet safety requirements that are difficult to verify in order to ensure that they operate

reliably and safely. MC/DC analysis is a way of verifying that safety-critical software

systems meet these requirements by testing each decision and condition in the program

with different input values. Thus, MC/DC analysis is important because even a small

software error in safety-critical systems can have grave consequences, such as system

failure, injury, or loss of life. Furthermore, MC/DC analysis is complex and requires

specialized expertise and tools to be performed accurately and effectively. Therefore, the

development of an algorithm that can automate the process of finding test parameters and

expected values for MC/DC coverage is a critical issue that requires a solution. Such a

2

tool could greatly improve the efficiency and effectiveness of software testing, thereby

enabling software engineers to deliver high-quality software to their customers.

Ensuring the correctness and reliability of code through rigorous testing is a fundamental

aspect of software engineering. However, attaining compliance with Modified

Condition/Decision Coverage (MC/DC) standards for test coverage presents a daunting

and time-intensive endeavor. The meticulous selection of test parameters and expected

values that align with MC/DC criteria often proves laborious and prone to errors, resulting

in substantial resource consumption.

An algorithm with the capability to automate this intricate process stands to become an

invaluable tool for software engineers, providing them with the means to swiftly and

effectively achieve their testing objectives. Such an advancement would empower

software engineers to concentrate on the pivotal aspects of software development,

relegating the mundane and repetitive tasks associated with testing to the realm of

automation.

Moreover, MC/DC analysis is a complex process demanding specialized expertise and

tools for accurate and effective execution. Consequently, the development of an algorithm

or application capable of automating the process of identifying test parameters and

expected values for MC/DC coverage emerges as a critical challenge in need of a solution.

So, this tool has the potential to substantially enhance the efficiency and effectiveness of

software testing.

1.2 Objectives

The primary objective of this project is to develop an algorithm and an application

implementing this algorithm that can automatically find test parameters and

corresponding expected values to achieve MC/DC coverage. The goal is to enhance the

efficiency and effectiveness of MC/DC analysis, a critical component of software testing.

By automating the test data generation process, the proposed solution aims to reduce the

time and effort required to achieve MC/DC coverage while improving the quality of the

generated tests. In addition, the project aims to evaluate the effectiveness of the proposed

solution by comparing it with existing MC/DC coverage techniques and assessing its

ability to meet software requirements.

In essence, the core objectives of this project are as follows:

• Developing an algorithm that can automatically find test parameters and

corresponding expected values to achieve MC/DC coverage.

• Enhancing the efficiency and effectiveness of MC/DC analysis by reducing the

time and effort required to achieve MC/DC coverage.

3

• Evaluating the effectiveness of the proposed solution by comparing it with existing

MC/DC coverage techniques.

• Determining the effectiveness of the proposed solution in achieving the desired

MC/DC coverage.

1.3 Scope

The project mainly concentrates on Boolean expressions as its primary focus with a

specific emphasis on programs written in the C language. It will leverage a blend of data

analysis, software development, and testing methodologies to accomplish its set

objectives. The algorithm's design will prioritize platform independence, ensuring its

applicability across a diverse spectrum of software systems.

1.4 Methodology

This project proposes a method to automatically determine test parameters and correct

outputs to achieve MC/DC coverage. The steps of the method depicted in Figure 1 are as

follows:

1. Parsing the source code to identify the conditions and decisions: The first step is

to identify all the conditions and decisions within the code. Conditions refer to the

logical expressions that are evaluated to be either true or false, while decisions are

the points in the code where the program chooses between two or more paths based

on a condition.

2. Constructing the control flow graph: The second step is to construct the control

flow graph (CFG) for the code. The CFG is a graphical representation of the

program's control flow, showing all the paths that the program can take.

3. Path exploration: The next step is to explore all possible paths in the CFG. This

involves generating and solving constraints that satisfy each condition and

decision in the program.

4. Test data generation: In this step, the algorithm generates test data that satisfies the

MC/DC criteria. This involves selecting input values that satisfy the constraints

generated in the previous step and cover all possible paths in the program.

5. Test data optimization: In the final step, the generated test data is optimized using

boundary-value analysis. This involves selecting input values that lie on the

boundaries of the input domain and are more likely to cause errors.

4

Figure 1 The Outline of PathFinder

In summary, Chapter 1 serves as the foundation for our investigation into automated

test parameters and expected value generation for achieving Modified

Condition/Decision Coverage (MC/DC) in software testing. Focused on the

challenges of manual parameter selection, the chapter articulates project objectives

centered on enhancing MC/DC analysis efficiency and effectiveness. The later

chapters will delve into the background information, including metrics like Statement

Coverage, Decision Coverage, and MC/DC, paving the way for a thorough exploration

of related work in Chapter 3. Positioned within the broader academic landscape, this

analysis identifies gaps in our innovative approach. Chapter 4 introduces the proposed

solution, detailing the algorithm's intricacies, and Chapter 5 concludes the study,

summarizing findings and insights derived from the exploration of MC/DC coverage

and automated test generation solutions.

5

CHAPTER 2

BACKGROUND INFORMATION

This chapter provides background information regarding essential concepts and metrics

integral to software testing methodologies. By delving into the definitions and intricacies

of key metrics such as Statement Coverage, Decision Coverage, Modified

Condition/Decision Coverage (MC/DC), Control Flow Graphs (CFGs), and Abstract

Syntax Trees (ASTs), we lay the groundwork for a comprehensive understanding of the

testing landscape.

2.1 Definitions

2.1.1 Statement Coverage

Statement coverage is a software testing metric that measures the percentage of

statements in a program that has been executed at least once during testing. It is a

white-box testing technique that focuses on the internal structure of the program.

Statement coverage is a basic metric that is often used to evaluate the effectiveness of

test suites. A high statement coverage indicates that a test suite has exercised a large

portion of the program code, making it more likely to have uncovered potential

defects. However, statement coverage is not a perfect predictor of fault detection, as

it does not consider the logical flow of the program.

The metric is straightforward to calculate and comprehend, and it frequently serves as

a proxy for more intricate metrics. However, the metric does not fully assess testing

effectiveness because it disregards the program's logical flow. Therefore, it is crucial

to use the metric in conjunction with other metrics (Whittaker, 2000).

2.1.2 Decision Coverage

Decision coverage is a software testing metric that measures the percentage of

decisions in a program that has been executed at least once during testing, considering

both the true and false outcomes of each decision. A decision is a point in the program

where a choice is made, such as an if statement or a switch statement.

6

Decision coverage is an important metric for software testing because it ensures that

each decision in the program has been exercised, which helps to identify potential

defects that may occur due to incorrect logic or data handling. It is a more stringent

measure than statement coverage, which only requires that each statement in the

program be executed at least once.

A recent study by Chen, Zhou, and Zhang (2018) found that decision coverage is a

more effective measure of fault detection than statement coverage. The study

evaluated the fault detection effectiveness of decision coverage and statement

coverage in a corpus of Java projects. The results showed that decision coverage was

able to detect more faults than statement coverage.

2.1.3 MC/DC

MC/DC stands for Modified Condition/Decision Coverage, which is a coverage

criterion in software testing that aims at generating test data to cover each independent

value of conditions in the program. It was raised as a trade-off between test adequacy

and cost and is very important in software testing because it requires only a few test

cases to satisfy this coverage criterion, and recent experimental results show that

strong MC/DC has better fault detection capability than other criteria (Wu, 2014).

MC/DC addresses this limitation by demanding that each condition or decision point

be exercised under both its true and false outcomes. This comprehensive approach

ensures that the program's logical flow is adequately tested, significantly increasing

the likelihood of detecting faults that might otherwise go unnoticed.

Figure 2 MC/DC Example

Consider a simple example given in Figure 2. Testing for statement coverage,

executing either Code block A or Code block B would suffice. However, MC/DC

demands that both true and false outcomes of the condition are tested, requiring the

execution of both Code block A and Code block B.

This thoroughness extends beyond simple binary decisions, encompassing complex

conditions involving multiple variables and nested statements. MC/DC ensures that

7

each condition or decision is exercised under all possible combinations of true and

false outcomes, providing a more rigorous assessment of the program's logic.

The effectiveness of MC/DC in fault detection stems from its ability to uncover faults

that lie in the program's decision-making processes. These faults can occur due to

errors in condition evaluation or incorrect handling of different outcomes.

By exercising each condition or decision under both true and false outcomes, MC/DC

increases the likelihood of triggering these faults, allowing them to be identified and

addressed during the testing phase. This proactive approach prevents faults from

propagating to subsequent stages of software development, reducing the risk of costly

and potentially disastrous errors in the final product.

2.1.4 Control Flow Graph

A Control Flow Graph (CFG) serves as a visual depiction encapsulating all potential

pathways that a program may traverse during its execution. This directed graph

systematically illustrates the program's control flow, where individual nodes

correspond to basic blocks, and edges signify the transition of control between these

blocks. Basic blocks, within the CFG context, denote sequences of instructions

executed sequentially without any jumps or targeted transfers. The directed edges

capture control flow jumps within the program. Notably, the CFG designates two

distinct blocks: the entry block, facilitating the initiation of control into the flow graph,

and the exit block, signifying the point where all control flow exits. This graphical

representation is indispensable for numerous compiler optimizations and static-

analysis tools, providing a comprehensive overview of a program's control dynamics

(Koppel, 2020).

CFGs serve as a fundamental visual representation of a program's control structure.

CFGs play an important role in identifying conditions and decisions within the code.

The graphical depiction provided by CFGs allows for clear and systematic

visualization of the program's logical flow, including loops, conditions, and branching

points. This visual insight is essential for pinpointing specific elements requiring test

coverage to fulfill MC/DC criteria. CFGs facilitate the identification of critical paths

and decision points, aiding in the creation of comprehensive test cases that cover all

possible combinations of conditions.

2.1.5 Abstract Syntax Tree

An Abstract Syntax Tree (AST) functions as a tree-shaped data structure that mirrors

the abstract syntactic arrangement of source code composed in a programming

language. It meticulously captures the hierarchical composition of the program and its

8

syntax, although it does not encapsulate semantic nuances. Within the AST, nodes

correspond to language constructs such as expressions, statements, and declarations,

while edges symbolize the interconnections between these constructs. This structural

representation proves instrumental in numerous software development tools, including

compilers, interpreters, static analyzers, and refactoring tools, as it facilitates a

comprehensive understanding and manipulation of the program's syntactic

organization without delving into its semantic intricacies (Liang, 2022).

9

CHAPTER 3

RELATED WORKS

In this chapter, we explore the existing body of knowledge and research that serves as the

foundation for our work. We looked for the previously proposed solutions and found out

the justification of our project. It is important to have a thorough understanding of the

current state of the field in order to properly appreciate and put into context the

advancements presented in this study. We delve into previous research and key findings

that have helped shape and develop the subject matter over time. By critically examining

relevant literature, we aim to identify gaps, challenges, and opportunities that motivate

and guide the novel contributions presented in our work. This comprehensive review

serves as a roadmap for readers, offering insights into the broader academic landscape and

positioning our research within the larger context of ongoing scholarly discussions.

3.1 Validating Object-Oriented Software At The Design Phase By Achieving

MC/DC (Barisal, 2019):

The method proposed in this paper is a technique for validating object-oriented software

at the design phase by achieving MC/DC (Modified Condition/Decision Coverage). The

method consists of the following steps:

• Constructing a UML activity diagram for the given system using ArgoUML, a tool

that supports various UML diagrams.

• Generating XML code from the UML activity diagram using ArgoUML’s export

function.

• Converting the XML code to XSD (XML Schema Definition) code, which is a

more precise and readable representation of the XML elements.

• Generating a skeletal Java code from the XSD code using JAXB (Java

Architecture for XML Binding), a tool that provides methods for binding XML

schema and Java objects.

• Customizing the Java code according to the syntax of jCUTE, a tool that performs

concolic testing, which combines concrete and symbolic execution to generate test

cases.

• Applying jCUTE to the Java code to obtain test cases that cover all possible paths

and outcomes of the program.

• Calculating MC/DC percentage from the test cases and the Java code using

COPECA (COverage Percentage Calculator), an in-house developed tool that uses

10

an Extended Truth Table to find independent conditions and a formula to compute

the coverage score.

The paper suggests a hybrid software verification technique that combines symbolic

execution and concrete execution to generate test cases that aim to maximize code

coverage. They have achieved 56.31% MC/DC coverage in their experiment. This

solution is dependent on UML diagrams generated by third-party tools which may not be

available for software engineers who work for automotive or aerospace industries.

3.2 MCDC-Star A White-Box Based Automated Test Generation For High MC/DC

Coverage (Wong, 2018):

This paper proposes a white-box-based automated test case generation technique for

achieving high modified condition/decision coverage (MC/DC) criterion using greedy-

based symbolic execution.

The paper describes the following steps of the method:

• Program Instrumentation and Compilation: The paper instruments the subject

program to measure MC/DC and compiles it to obtain an executable.

• Path Direction Generation: The paper analyzes the control flow of the subject

program and constructs a path direction for each decision, which consists of a

condition combination, an MC/DC improvement, and an assembly code execution

sequence.

• Test Generation Using Symbolic Execution: The paper uses Triton, a dynamic

symbolic executor, to generate test input values that can follow the path directions

with the highest MC/DC improvements. The paper also handles the issues of

unreachable decisions and constraint conflicts.

• Test Execution and MC/DC Measurement: The paper executes the generated test

input values against the instrumented executable and updates the MC/DC coverage

information using a branch-independent effect (BIE)-based approach.

The paper claims that the method can achieve high MC/DC coverage faster and more

effectively than a random method.

The downside of their method is that it might change the program’s behavior, which limits

its practicality. This is because they use code transformation-based symbolic execution

techniques to generate test cases for achieving MC/DC. Code transformation is a process

of modifying the source code of a program to make it easier to analyze or test. However,

this process can introduce errors or alter the semantics of the original program, which can

11

affect the validity of the test results. Therefore, their method is not suitable for testing

programs that have strict requirements on correctness and reliability.

3.3 Automatic Test Data Generation For Unit Testing To Achieve Mc/Dc Criterion

(Tianyong Wu, 2014):

This method generates test data for MC/DC, a complex coverage criterion that considers

the logical expressions in the branch statements of a program. This solution relies on third-

party tools to create test paths.

A four-step process that involves:

• Translating the target program into a Control Flow Graph (CFG).

• Extracting Condition Level Test Paths (CLTPs) from the CFG using a greedy

strategy to select the next condition vector for each decision.

• Also, checking the feasibility of CLTPs and generating test data for the feasible

and complete CLTPs using symbolic execution and constraint solving.

• Reducing the CLTP set without decreasing the coverage using a Pseudo-Boolean

Optimization (PBO) solver.

• A prototype tool that implements the method and uses Clang, Z3, and clasp as

external tools.

The condition vector selection strategy in the proposed method is a greedy strategy that

selects the next condition vector for each decision. The strategy selects the condition

vector that covers the most uncovered conditions in the current CLTP (Condition Level

Test-Path) and has the least number of constraints. The strategy also considers the

feasibility of the selected condition vector and the coverage of the remaining CLTPs. The

goal of the strategy is to reduce the number of constraint-solving calls and the size of the

CLTP set without decreasing the coverage.

 The effectiveness of the greedy strategy is evaluated in the experiments, and the results

show that the greedy strategy can improve the efficiency and cost of the test data

generation process.

3.4 An Automated Tool for MC/DC Test Data Generation (Ariful Haque, 2014):

The objective of this paper is to design and implement an automated tool for MC/DC test

data generation, called MC/DC GEN. The tool takes a Boolean expression as input and

produces a set of test cases that satisfy the MC/DC criterion. The tool uses a local search

12

algorithm to find all possible MC/DC pairs for each predicate in the expression and then

removes the redundant pairs to generate the final test data. The tool also compares the

effectiveness of MC/DC with a pairwise testing technique using a case study.

The design and framework for MC/DC Gen is as follows:

• MC/DC Gen is a web-based tool that can automatically generate test data for

structural testing based on the Modified Condition/Decision Coverage (MC/DC)

criterion.

• MC/DC Gen is developed using PHP programming language and hosted in a

Linux-based Virtual Private Server.

• MC/DC Gen consists of five main components: input processing and analysis,

generating a list of solutions, MC/DC pairs with predicates, generating the final

test data, and case study.

• Input processing and analysis: The user inputs the Boolean expression of the

predicate to be tested according to the MC/DC Gen standard notation. The tool

separates the predicates, operators, and grouping notation from the expression and

keeps a pointer to match them correctly.

• Generating a list of solutions: The tool starts with a local search to find all possible

solutions for the separated predicates. It randomly chooses an initial solution and

computes its result. It then seeks for a neighbor solution that differs only by the

value of one predicate but gives a different result for the expression. This is called

an MC/DC pair and is stored in an array. The search continues until all the

predicates are searched completely.

• MC/DC pairs with predicates: The tool populates a table with predicates in

columns and a list of identified MC/DC pairs for each predicate in rows. This

representation gives an overall view of the identified solutions.

• Generating the final test data: The tool removes the duplication test data from the

previous step and generates the actual MC/DC pairs from the combination of pairs.

MC/DC GEN's web-based nature may hinder accessibility in restricted environments,

and its exclusive reliance on PHP limits language support, posing challenges for

projects in other languages. These downsides underscore the importance of

considering infrastructure dependencies and language flexibility when opting for

automated MC/DC test data generation tools like MC/DC GEN.

3.5 Comparing Pathfinder With Related Works

In this section, we draw comparisons between Pathfinder, our automated test case

generation tool, and the existing works discussed in Chapter 3. Each tool contributes to

13

the realm of achieving Modified Condition/Decision Coverage (MC/DC) in software

testing, but distinctive features and methodologies set them apart.

3.5.1 Validating Object-Oriented Software at the Design Phase (Barisal, 2019):
Similarities:

• Both approaches aim to achieve MC/DC coverage in the software testing

process.

• Both tools utilize a combination of techniques, including symbolic execution, to

generate test cases.

Differences:

• Pathfinder focuses on the automation of test case generation specifically for C

language source codes, while Barisal's method targets object-oriented software

using UML diagrams.

• Pathfinder employs a comprehensive process from source code parsing to

expected result generation, whereas Barisal's method relies on UML diagrams

and tools like ArgoUML and jCUTE.

3.5.2 MCDC-STAR (Wong, 2018):
Similarities:

• Both tools are designed to achieve high MC/DC coverage.

• Both utilize symbolic execution in their methodologies.

Differences:

• Pathfinder concentrates on C language source codes, while MCDC-STAR is a

white-box-based automated test case generation tool written in Java.

• MCDC-STAR introduces the possibility of altering the program's behavior due

to code transformation, a concern not present in Pathfinder.

3.5.3 Automatic Test Data Generation for Unit Testing (Tianyong Wu, 2014):
Similarities:

• Both tools aim for MC/DC coverage in unit testing.

• Both employ symbolic execution and constraint-solving in their processes.

Differences:

• Pathfinder is tailored for C language source codes, whereas Tianyong Wu's

method is more generic and can be applied to various programming languages.

14

• Tianyong Wu's method uses a greedy strategy for condition vector selection,

which is not explicitly employed in Pathfinder.

3.5.4 Automated Tool for MC/DC Test Data Generation (Ariful Haque, 2014):
Similarities:

• Both tools are designed to generate test data for achieving MC/DC coverage.

• Both emphasize automated processes in test data generation.

Differences:

• Pathfinder specifically targets C language source codes, while MC/DC GEN is

developed for PHP.

• MC/DC GEN utilizes a local search algorithm, contrasting with Pathfinder's

approach, which employs a combination of parsing, CFG generation, and test

path generation.

In summary, while all the discussed tools, including Pathfinder, share the common goal

of achieving MC/DC coverage, the differences in their target languages, methodologies,

and underlying techniques highlight the unique contributions of each tool. Pathfinder

stands out for its tailored approach to C language source codes and its comprehensive,

automated process from source code parsing to expected result generation.

15

CHAPTER 4

PATHFINDER

In this section, we explain the details of PathFinder, our tool designed to automate the

generation of comprehensive test cases for C language source codes, with a particular

focus on fulfilling the Modified Condition/Decision Coverage (MC/DC) criteria. The

methodology unfolds in a series of well-defined steps, each explained within dedicated

sections. Beginning with the foundational step of parsing the source code (Section 4.1),

we progress through the creation of a Control Flow Graph (CFG) (Section 4.2), the

identification of decisions and conditions (Section 4.3), and the systematic generation of

test paths (Section 4.4). The significance of finding expected results in software testing is

explored in Section 4.5, underscoring its crucial role. A comprehensive summary of the

entire PathFinder process is presented in Section 4.6, highlighting the interconnected

modules that collectively enhance the efficiency and effectiveness of software testing.

However, before delving into these detailed steps, we acknowledge and address the

challenges encountered during the implementation of PathFinder in Section 4.7.

4.1 Parse Source Code

The proposed method ParseSource’s implementation uses the Python programming

language to parse C language source codes to extract decision structures, conditions, and

related information. Once parsed, the tool generates comprehensive test cases that fulfill

the MC/DC criteria. Leveraging Python’s flexibility and powerful parsing libraries, we

aim to automate the generation of test cases, reducing the manual effort involved in

creating exhaustive test suites.

We chose the C programming language because C is one of the most used programming

languages in safety-critical industries such as automotive and aerospace. Many embedded

systems and firmware in these domains are written in C. Hence, this project directly

addresses the testing needs of a significant portion of safety-critical applications.

Moreover, several safety-critical systems have legacy codebases written in C. By

supporting C, our project caters to the need for compatibility with existing systems.

Moreover, industry standards often prescribe the use of C in safety-critical software

development, reinforcing the relevance of our tool in such environments.

16

Parsing is essential for the extraction of decision structures, conditions, and related

information, crucial elements for fulfilling the MC/DC criteria in test case generation. For

the parsing algorithm a sample code, ParseSource, is given in Figure 3.

The ParseSource class assumes a central role within PathFinder by specializing in the

critical task of parsing C code into a structured representation. Its primary responsibility

lies in extracting information from the Abstract Syntax Tree (AST), a fundamental data

structure that captures the hierarchical structure of the parsed code. The class performs

this operation through its core method, parse(), which parses the C source code and

populates the AST with relevant details. By focusing on the extraction of decision

structures, conditions, and other essential elements, the ParseSource class transforms raw

C code into an interpretable structured representation.

Figure 3 ParseSource Class – Parsing Algorithm

The sample code given in Figure 3, starts with import statements and includes the

following methods:

• parse(): Parses the C source code and stores the AST

• get_statements(): Extracts all statements from the AST

• get_conditions(): Extracts all conditional expressions from the AST.

17

• get_control_structures(): Extracts all control structures (if, while, for) from the

AST.

4.2. Create Control Flow Graph

Creating a Control Flow Graph (CFG) is important for several reasons. A CFG provides

a visual representation of the flow of control within the code. This is valuable for

understanding the overall structure of the program, including loops, conditions, and

branching.

MC/DC coverage requires identifying conditions and decisions in the code. The CFG

makes it easier to pinpoint these elements, aiding in the creation of test cases that cover

all possible combinations.

MC/DC coverage mandates thorough testing of conditions and decisions in the code. The

CFG serves as a powerful tool for achieving this coverage by making it easier to pinpoint

these elements. Test cases derived from CFG analysis can systematically cover different

paths, ensuring that all possible combinations of conditions are exercised.

CFG aids in identifying and visualizing potential paths through the code, enabling testers

to analyze and verify the correctness of the program's logic. It also facilitates the detection

of unreachable or redundant code, contributing to code quality and maintainability.

The code excerpt given in Figure 4, ControlFlowGraph, illustrates the CFG generation

algorithm. The ControlFlowGraph class assumes a pivotal role in PathFinder by standing

for a control flow graph (CFG) of the source code. The primary responsibility of this class

is to visually capture and articulate the flow of control within the code. Achieved through

the build_graph() method, the CFG serves as a graphical representation, elucidating the

program's overall structure, encompassing loops, conditions, and branching.

18

Figure 4 ControlFlowGraph Class - CFG Generation Algorithm

The excerpt code given in Figure 4, includes the following methods that build a

comprehensive CFG representation, aiding in the generation of exhaustive test suites that

adhere to MC/DC criteria:

• build_graph(): Builds the CFG by creating nodes and edges based on the

provided statements, conditions, and control structures.

• add_node(): Adds a node to the CFG with the given statement.

• get_graph(): Returns the CFG representation as a tuple of (nodes, edges)

• find_successors(): Returns a list of node IDs that are directly reachable from the

given node.

• find_predecessors(): Finds the predecessor nodes that can directly reach a given

node.

19

• find_entry_points(): Identifies nodes without any incoming edges (potential

starting points).

• find_exit_points(): Identifies nodes without any outgoing edges (potential ending

points).

4.3 Identify Decisions and Conditions

Identifying and thoroughly testing decision points and conditions within the source code

is a crucial responsibility of PathFinder, facilitated by the functionalities within the

Identify Decisions and Conditions phase. This phase serves as a bridge between the

parsing capabilities of the ParseSource class and the graphical representation provided by

the ControlFlowGraph class.

The identification and parsing of branches contribute to the creation of a map of possible

execution paths, enabling the PathFinder to cover all conceivable scenarios and ensuring

the reliability and robustness of safety-critical applications in the face of diverse

operational conditions.

The primary responsibility in this phase is to identify decision points (branches) within

the Control Flow Graph (CFG). The class definition given in Figure 5, DecisionIdentifier,

ensures that decision points and conditions are accurately identified and analyzed. The

systematic traversal of paths and parsing of branches contribute to the creation of a

detailed understanding of the program's decision-making structures.

The sample code given in Figure 5, includes the following methods:

• identify_branches(): Identifies branches within the CFG and returns a dictionary

mapping decision points to their associated branch path.

• parse_branches(): Parses branches for a given decision point and returns a list

of branch paths.

• traverse_path(): Recursively traverses a path through the CFG, adding

statements to the branch_path list.

20

Figure 5 DecisionIdentifie Class - Decision Identifying Algorithm

4.4 Generate Test Paths

The core of the PathFinder tool lies in its ability to systematically generate test paths that

fulfill the MC/DC criteria. Once the decision points and conditions are identified through

the ControlFlowGraph and DecisionIdentifier phases, the Generate Test Paths phase takes

center stage. This phase is responsible for exploring and generating all possible test paths

within the Control Flow Graph (CFG) to ensure comprehensive coverage.

The algorithm in Figure 6, TestPathGenerator, outlines the process of generating test

paths. The TestPathGenerator class encapsulates the functionality for generating test

paths, utilizing the depth-first search (DFS) approach to systematically traverse the

Control Flow Graph (CFG). The recursive nature of the DFS ensures that all possible paths

are explored, considering decision points and conditions at each step. The generated test

21

paths represent diverse scenarios, fulfilling the MC/DC coverage criteria and providing a

comprehensive set of test cases for software testing.

The TestPathGenerator has the following methods:

• generate_expected_results(): Generates expected results for all test paths.

• calculate_results_for_path(): Calculates expected results for a single test path.

• Satisfies_coverage(): Checks if a given path satisfies the specified coverage

criteria.

Figure 6 TestPathGenerator Class - Test Path Generation Algorithm

In summary, the TestPathGenerator class serves as a pivotal component in the PathFinder,

offering a systematic approach to generate test paths that adhere to the specified coverage

criteria, with a particular focus on MC/DC Coverage. Leveraging recursive exploration

22

and decision-point analysis, the algorithm navigates through the Control Flow Graph

(CFG), producing diverse test paths that comprehensively cover the program's logical

flow. The satisfaction of MC/DC coverage criteria is rigorously checked, ensuring that

each decision point and condition undergoes thorough testing.

4.5. Find Expected Results

The expected result is crucial in software testing because it serves as a predefined

benchmark against which the actual outcomes of test cases can be compared. It provides

a definitive target or anticipated behavior for a given set of inputs, allowing testers to

verify whether the software functions as intended. Testers compare the actual outcomes

of test cases with the expected results to identify any discrepancies or deviations from the

intended behavior.

Any disparities between actual results and expected outcomes indicate potential defects

or issues in the software.

Especially, in the absence of formal requirements, finding expected results during testing

becomes a critical navigational tool for software testers. Without predefined

specifications, the process of determining expected outcomes involves a careful

examination of the software's behavior under various inputs and scenarios. The act of

finding expected results in such scenarios aids in uncovering defects.

23

Figure 7 ExpectedResultGenerator Class: Expected Result Algorithm

In this context, ExpectedResultGenerator class shown in Figure 7, systematically

generates expected results for a given set of test paths. This critical functionality is based

on the analysis of the Control Flow Graph (CFG), ensuring that the expected outcomes

for each test path are accurately determined.

ExpectedResultGenerator has the following methods:

• generate_expected_results(): Generates expected results for all test paths.

• calculate_results_for_path(): Calculates expected results for a single test path.

In essence, the "Find Expected Result" section plays a pivotal role in enhancing the depth

and accuracy of software testing. Through systematic analysis and calculation, it ensures

that the expected results align with the specified coverage criteria, providing software

24

engineers with valuable insights into the performance and reliability of their code under

diverse scenarios.

4.6. Summary Of Pathfinder Process

The test automation process within the PathFinder comprises several interconnected

modules, each playing a distinct role in enhancing the efficiency and effectiveness of

software testing. From the initial parsing of the source code to the systematic generation

of expected results, the process unfolds in a structured manner.

The journey begins with the Parse Source Code module (4.1), where the C language source

code is analyzed to extract decision structures, conditions, and related information. This

parsed information forms the foundation for subsequent analysis.

Following this, the Create Control Flow Graph module (4.2) steps in to construct a visual

representation of the program's control flow. The Control Flow Graph (CFG) serves as a

roadmap for identifying conditions, decisions, and potential paths, laying the groundwork

for comprehensive test coverage.

In the Identify Decisions and Conditions phase (4.3), the tool systematically identifies

decision points and conditions within the CFG, creating a map of possible execution paths.

This critical step facilitates a detailed understanding of the program's decision-making

structures.

The Generate Test Paths module (4.4) takes center stage as it dynamically explores the

CFG, systematically generating diverse test paths that adhere to the Modified

Condition/Decision Coverage (MC/DC) criteria. Through recursive depth-first search, the

algorithm ensures comprehensive coverage of decision points and conditions.

Transitioning to the Find Expected Result section (4.5), the tool calculates and generates

expected results for each test path. This process involves both the systematic calculation

of outcomes for individual paths and the holistic generation of expected results for the

entire set of test paths.

In summary, the summarized test automation process encapsulates the journey from

code parsing to the generation of expected outcomes. This organized approach improves

the effectiveness of software testing, offering a strong structure for identifying problems,

confirming accuracy, and guaranteeing the dependability of software in various

situations. The interconnected nature of these modules contributes to the overall

effectiveness of the PathFinder in empowering software engineers to deliver high-

quality, reliable software products.

25

4.7. Challenges of Pathfinder

The implementation of the PathFinder encountered several challenges, each posing

distinctive hurdles in achieving seamless and efficient test automation. These challenges

spanned various aspects of the development process and are outlined below:

• Complexity of C Language:

The inherent complexity of the C programming language posed a significant

challenge in code analysis. Navigating through the multitude of language

constructs, intricate syntax, and addressing edge cases demanded a sophisticated

approach. Ensuring that the tool effectively handles diverse coding styles and

constructs was a critical challenge, requiring attention to detail during the code

analysis phase.

• Parsing Challenges:

The presence of preprocessor directives, macros, and complex declarations in C

code introduced parsing challenges. The variability introduced by these elements

required the development of robust parsing mechanisms to accurately extract

decision structures and conditions. Overcoming the intricacies of preprocessor

directives and handling complex macro expansions emerged as a formidable task

in achieving precise code analysis.

• Handling Large Codebases:

As the tool aimed to be applicable to real-world scenarios, handling large

codebases became a pivotal challenge. The complexities introduced by multiple

files, interdependencies, and diverse project structures necessitated the

development of scalable mechanisms. Ensuring that the tool maintains efficiency

and accuracy in the face of extensive codebases posed a constant challenge

throughout the implementation process.

• Python Performance Limitations:

The performance limitations of the Python programming language became evident

when dealing with extensive codebases. Parsing and generating test paths for large

codes presented time-intensive processes, impacting the overall efficiency of the

tool.

26

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this report, we introduced Pathfinder, an automated tool designed to streamline the

generation of comprehensive test cases for C language source codes, with a specific focus

on fulfilling the Modified Condition/Decision Coverage (MC/DC) criteria. The

methodology presented in Pathfinder unfolds through a structured series of steps,

including source code parsing, control flow graph (CFG) creation, decision and condition

identification, test path generation, and determination of expected results.

Pathfinder's foundation lies in its ability to parse C language source codes, extract decision

structures, and systematically generate test paths that adhere to MC/DC criteria.

Leveraging Python's parsing capabilities and powerful libraries, the tool aims to reduce

manual effort and enhance the efficiency of test case generation.

The creation of a CFG provides a visual representation of the code's control flow, aiding

in the identification of decision points and conditions crucial for MC/DC coverage. The

systematic generation of test paths, facilitated by the TestPathGenerator, ensures thorough

coverage of decision points and conditions. Additionally, the identification and parsing of

branches, as handled by the DecisionIdentifier, contribute to the creation of a detailed map

of possible execution paths.

The Find Expected Results module plays a pivotal role in software testing, systematically

generating expected outcomes for each test path. This process is crucial in evaluating the

correctness and reliability of the code under diverse scenarios.

As Pathfinder evolves, several avenues for future enhancements emerge to augment its

capabilities and address potential limitations. Looking ahead, Pathfinder's future work

involves enhancing support for more C language features, including complex expressions,

function calls, and arrays. Additionally, external function analysis is proposed to analyze

calls and potential impacts on variable values, contributing to more accurate result

prediction. The integration of machine learning models is also considered, aiming to

improve prediction accuracy and handle more complex code constructs.

 Enhanced Support for C Language Features:

While Pathfinder is currently capable of parsing and analyzing decision structures in C

language source codes, future development could extend its capabilities to encompass a

broader range of language features. This includes the incorporation of more complex

expressions, function calls, and arrays, enabling Pathfinder to generate test cases that

account for a wider spectrum of C language constructs. This expansion would contribute

to a more comprehensive and adaptable testing solution.

27

External Function Analysis:

To enhance the precision of Pathfinder's test case generation, an area of potential

improvement involves the analysis of external functions. If the parsed code interacts with

external functions, future iterations of Pathfinder could incorporate mechanisms to

analyze these calls and assess their potential impact on variable values within the program.

This additional layer of analysis would contribute to a more accurate prediction of results,

particularly in scenarios where external functions influence the program's behavior.

Machine Learning Integration:

To harness the power of predictive modeling and further refine its test case generation,

Pathfinder could explore the integration of machine learning models. By leveraging

machine learning algorithms trained on extensive datasets of program behavior,

Pathfinder might enhance its prediction accuracy. This integration could prove especially

beneficial when handling intricate code constructs and adapting to diverse programming

styles. The utilization of machine learning could contribute to a more intelligent and

adaptive test case generation process.

The envisioned future work for Pathfinder revolves around expanding its language

feature support, delving into external function analysis for more precise predictions, and

exploring the integration of machine learning models to enhance overall accuracy and

adaptability. These potential advancements aim to position Pathfinder as a more

versatile and sophisticated tool, catering to the evolving landscape of software

development and testing practices.

In conclusion, Pathfinder represents a valuable contribution to the field of automated test

case generation, offering a systematic and adaptable approach. Its structured

methodology, combined with potential future enhancements, positions Pathfinder as a

versatile tool to aid software engineers in delivering high-quality, reliable software

products. As software development continues to evolve, Pathfinder stands as a testament

to the ongoing pursuit of effective and intelligent testing solutions.

28

REFERENCES

F. Ahishakiye, J. I. Requeno Jarabo, L. M. Kristensen, V. Stolz, "MC/DC Test Cases

Generation Based on BDDs," in Dependable Software Engineering: Theories,

Tools, and Applications, vol. 13071, pp. 178, 2021.

I. K. Ariful Haque, "An Automated Tool for MC/DC Test Data Generation," in

Proceedings of the Australian Software Engineering Conference, pp. 152-157,

2014.

J. A. Whittaker, "What Is Software Testing? Why Is It So Hard? Practice Tutorial," in

IEEE Software, vol. 17, pp. 70-79, 2000.

J. Koppel, "Automatically Deriving Control-Flow Graph Generators from Operational

Semantics," in Proceedings of the ACM on Programming Languages, pp. 742-771, 2020.

L. H. Wong, "MCDC-Star: A White-Box Based Automated Test Generation for High

MC/DC Coverage," in 5th International Conference on Dependable Systems and Their

Applications (DSA), pp. 102-112, 2018.

Linghuan Hu, W. Eric Wong, D. Richard Kuhn, Raghu Kacker, "MCDC-Star: A White-

Box Based Automated Test Generation for High MC/DC Coverage", 2018 5th

International Conference on Dependable Systems and Their Applications (DSA),

pp.102-112, 2018.

R. Liang, "AstBERT: Enabling Language Model for Code Understanding with Abstract,"

in Proceedings of the Fourth Workshop on Financial Technology and Natural

Language Processing, 2022, pp. 70-77.

S. Hallé, "Test Suite Generation for Boolean Conditions with Equivalence Class

Partitioning," 2022 IEEE/ACM 10th International Conference on Formal Methods

in Software Engineering (FormaliSE), Pittsburgh, PA, USA, 2022, pp. 23-33, doi:

10.1145/3524482.3527659.

S. K. Barisal, "Validating Object-Oriented Software at Design Phase by Achieving

MC/DC," in International Journal of System Assurance Engineering and Management,

pp. 811-823, 2019.

29

S. Kangoye, A. Todoskoff, and M. Barreau, "Practical methods for automatic MC/DC test

case generation of Boolean expressions," 2015 IEEE AUTOTESTCON, National

Harbor, MD, USA, 2015, pp. 203-212, doi: 10.1109/AUTEST.2015.7356490.

T. Wu, J. Yan, "Automatic Test Data Generation for Unit Testing to Achieve MC/DC

Criterion," in Eighth International Conference on Software Security and

Reliability, pp. 118-126, 2014.

