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CHAPTER 1 

CHAP 

INTRODUCTION 

1.1 Motivation  

Testing code for correctness and reliability is among the important tasks of software 

engineers. However, it can be challenging a time consuming to achieve Modified 

Condition/Decision Coverage (MC/DC) standards for testers. Selecting test parameters 

and expected values that fulfill the MC/DC criteria is usually a tedious and error-prone 

process, leading to significant resource consumption. 

In order to address this challenge, there is a need to create an algorithm that can automate 

the process of finding test parameters and expected values that satisfy MC/DC coverage. 

Automating this process will allow to reduce the time and resources required for testing 

significantly while increasing the effectiveness and reliability of the test suites at the same 

time. 

An algorithm that can automate this process is sought by many software test engineers 

and could be a valuable tool, allowing them to achieve their testing goals quickly and 

efficiently. With this, software testing engineers will be able to focus their attention on the 

more important aspects of software development while relying on automation to handle 

the tedious and time-consuming tasks associated with software testing. 

MC/DC analysis is an important aspect of safety-critical software development. Safety-

critical systems, such as those used in aerospace, automotive, and medical industries, must 

meet safety requirements that are difficult to verify in order to ensure that they operate 

reliably and safely. MC/DC analysis is a way of verifying that safety-critical software 

systems meet these requirements by testing each decision and condition in the program 

with different input values. Thus, MC/DC analysis is important because even a small 

software error in safety-critical systems can have grave consequences, such as system 

failure, injury, or loss of life. Furthermore, MC/DC analysis is complex and requires 

specialized expertise and tools to be performed accurately and effectively. Therefore, the 

development of an algorithm that can automate the process of finding test parameters and 

expected values for MC/DC coverage is a critical issue that requires a solution. Such a 
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tool could greatly improve the efficiency and effectiveness of software testing, thereby 

enabling software engineers to deliver high-quality software to their customers. 

Ensuring the correctness and reliability of code through rigorous testing is a fundamental 

aspect of software engineering. However, attaining compliance with Modified 

Condition/Decision Coverage (MC/DC) standards for test coverage presents a daunting 

and time-intensive endeavor. The meticulous selection of test parameters and expected 

values that align with MC/DC criteria often proves laborious and prone to errors, resulting 

in substantial resource consumption. 

An algorithm with the capability to automate this intricate process stands to become an 

invaluable tool for software engineers, providing them with the means to swiftly and 

effectively achieve their testing objectives. Such an advancement would empower 

software engineers to concentrate on the pivotal aspects of software development, 

relegating the mundane and repetitive tasks associated with testing to the realm of 

automation. 

Moreover, MC/DC analysis is a complex process demanding specialized expertise and 

tools for accurate and effective execution. Consequently, the development of an algorithm 

or application capable of automating the process of identifying test parameters and 

expected values for MC/DC coverage emerges as a critical challenge in need of a solution. 

So, this tool has the potential to substantially enhance the efficiency and effectiveness of 

software testing. 

1.2 Objectives 

The primary objective of this project is to develop an algorithm and an application 

implementing this algorithm that can automatically find test parameters and 

corresponding expected values to achieve MC/DC coverage. The goal is to enhance the 

efficiency and effectiveness of MC/DC analysis, a critical component of software testing. 

By automating the test data generation process, the proposed solution aims to reduce the 

time and effort required to achieve MC/DC coverage while improving the quality of the 

generated tests. In addition, the project aims to evaluate the effectiveness of the proposed 

solution by comparing it with existing MC/DC coverage techniques and assessing its 

ability to meet software requirements.  

In essence, the core objectives of this project are as follows: 

• Developing an algorithm that can automatically find test parameters and 

corresponding expected values to achieve MC/DC coverage. 

• Enhancing the efficiency and effectiveness of MC/DC analysis by reducing the 

time and effort required to achieve MC/DC coverage. 
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• Evaluating the effectiveness of the proposed solution by comparing it with existing 

MC/DC coverage techniques. 

• Determining the effectiveness of the proposed solution in achieving the desired 

MC/DC coverage. 

1.3 Scope 

The project mainly concentrates on Boolean expressions as its primary focus with a 

specific emphasis on programs written in the C language. It will leverage a blend of data 

analysis, software development, and testing methodologies to accomplish its set 

objectives. The algorithm's design will prioritize platform independence, ensuring its 

applicability across a diverse spectrum of software systems. 

1.4 Methodology 

This project proposes a method to automatically determine test parameters and correct 

outputs to achieve MC/DC coverage. The steps of the method depicted in Figure 1 are as 

follows: 

1. Parsing the source code to identify the conditions and decisions: The first step is 

to identify all the conditions and decisions within the code. Conditions refer to the 

logical expressions that are evaluated to be either true or false, while decisions are 

the points in the code where the program chooses between two or more paths based 

on a condition. 

2. Constructing the control flow graph: The second step is to construct the control 

flow graph (CFG) for the code. The CFG is a graphical representation of the 

program's control flow, showing all the paths that the program can take.  

3. Path exploration: The next step is to explore all possible paths in the CFG. This 

involves generating and solving constraints that satisfy each condition and 

decision in the program. 

4. Test data generation: In this step, the algorithm generates test data that satisfies the 

MC/DC criteria. This involves selecting input values that satisfy the constraints 

generated in the previous step and cover all possible paths in the program. 

5. Test data optimization: In the final step, the generated test data is optimized using 

boundary-value analysis. This involves selecting input values that lie on the 

boundaries of the input domain and are more likely to cause errors. 
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Figure 1 The Outline of PathFinder 

 

In summary, Chapter 1 serves as the foundation for our investigation into automated 

test parameters and expected value generation for achieving Modified 

Condition/Decision Coverage (MC/DC) in software testing. Focused on the 

challenges of manual parameter selection, the chapter articulates project objectives 

centered on enhancing MC/DC analysis efficiency and effectiveness. The later 

chapters will delve into the background information, including metrics like Statement 

Coverage, Decision Coverage, and MC/DC, paving the way for a thorough exploration 

of related work in Chapter 3. Positioned within the broader academic landscape, this 

analysis identifies gaps in our innovative approach. Chapter 4 introduces the proposed 

solution, detailing the algorithm's intricacies, and Chapter 5 concludes the study, 

summarizing findings and insights derived from the exploration of MC/DC coverage 

and automated test generation solutions. 
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CHAPTER 2 

 

BACKGROUND INFORMATION 

This chapter provides background information regarding essential concepts and metrics 

integral to software testing methodologies. By delving into the definitions and intricacies 

of key metrics such as Statement Coverage, Decision Coverage, Modified 

Condition/Decision Coverage (MC/DC), Control Flow Graphs (CFGs), and Abstract 

Syntax Trees (ASTs), we lay the groundwork for a comprehensive understanding of the 

testing landscape. 

2.1 Definitions 

 

2.1.1  Statement Coverage 
 

Statement coverage is a software testing metric that measures the percentage of 

statements in a program that has been executed at least once during testing. It is a 

white-box testing technique that focuses on the internal structure of the program. 

Statement coverage is a basic metric that is often used to evaluate the effectiveness of 

test suites. A high statement coverage indicates that a test suite has exercised a large 

portion of the program code, making it more likely to have uncovered potential 

defects. However, statement coverage is not a perfect predictor of fault detection, as 

it does not consider the logical flow of the program. 

The metric is straightforward to calculate and comprehend, and it frequently serves as 

a proxy for more intricate metrics. However, the metric does not fully assess testing 

effectiveness because it disregards the program's logical flow. Therefore, it is crucial 

to use the metric in conjunction with other metrics (Whittaker, 2000). 

2.1.2 Decision Coverage 
 

Decision coverage is a software testing metric that measures the percentage of 

decisions in a program that has been executed at least once during testing, considering 

both the true and false outcomes of each decision. A decision is a point in the program 

where a choice is made, such as an if statement or a switch statement. 
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Decision coverage is an important metric for software testing because it ensures that 

each decision in the program has been exercised, which helps to identify potential 

defects that may occur due to incorrect logic or data handling. It is a more stringent 

measure than statement coverage, which only requires that each statement in the 

program be executed at least once. 

A recent study by Chen, Zhou, and Zhang (2018) found that decision coverage is a 

more effective measure of fault detection than statement coverage. The study 

evaluated the fault detection effectiveness of decision coverage and statement 

coverage in a corpus of Java projects. The results showed that decision coverage was 

able to detect more faults than statement coverage. 

2.1.3 MC/DC 
 

MC/DC stands for Modified Condition/Decision Coverage, which is a coverage 

criterion in software testing that aims at generating test data to cover each independent 

value of conditions in the program. It was raised as a trade-off between test adequacy 

and cost and is very important in software testing because it requires only a few test 

cases to satisfy this coverage criterion, and recent experimental results show that 

strong MC/DC has better fault detection capability than other criteria (Wu, 2014). 

MC/DC addresses this limitation by demanding that each condition or decision point 

be exercised under both its true and false outcomes. This comprehensive approach 

ensures that the program's logical flow is adequately tested, significantly increasing 

the likelihood of detecting faults that might otherwise go unnoticed. 

 

Figure 2 MC/DC Example 

Consider a simple example given in Figure 2. Testing for statement coverage, 

executing either Code block A or Code block B would suffice. However, MC/DC 

demands that both true and false outcomes of the condition are tested, requiring the 

execution of both Code block A and Code block B. 

This thoroughness extends beyond simple binary decisions, encompassing complex 

conditions involving multiple variables and nested statements. MC/DC ensures that 



7 

 

 

each condition or decision is exercised under all possible combinations of true and 

false outcomes, providing a more rigorous assessment of the program's logic. 

The effectiveness of MC/DC in fault detection stems from its ability to uncover faults 

that lie in the program's decision-making processes. These faults can occur due to 

errors in condition evaluation or incorrect handling of different outcomes. 

By exercising each condition or decision under both true and false outcomes, MC/DC 

increases the likelihood of triggering these faults, allowing them to be identified and 

addressed during the testing phase. This proactive approach prevents faults from 

propagating to subsequent stages of software development, reducing the risk of costly 

and potentially disastrous errors in the final product.  

2.1.4 Control Flow Graph 
 

A Control Flow Graph (CFG) serves as a visual depiction encapsulating all potential 

pathways that a program may traverse during its execution. This directed graph 

systematically illustrates the program's control flow, where individual nodes 

correspond to basic blocks, and edges signify the transition of control between these 

blocks. Basic blocks, within the CFG context, denote sequences of instructions 

executed sequentially without any jumps or targeted transfers. The directed edges 

capture control flow jumps within the program. Notably, the CFG designates two 

distinct blocks: the entry block, facilitating the initiation of control into the flow graph, 

and the exit block, signifying the point where all control flow exits. This graphical 

representation is indispensable for numerous compiler optimizations and static-

analysis tools, providing a comprehensive overview of a program's control dynamics 

(Koppel, 2020). 

CFGs serve as a fundamental visual representation of a program's control structure. 

CFGs play an important role in identifying conditions and decisions within the code. 

The graphical depiction provided by CFGs allows for clear and systematic 

visualization of the program's logical flow, including loops, conditions, and branching 

points. This visual insight is essential for pinpointing specific elements requiring test 

coverage to fulfill MC/DC criteria. CFGs facilitate the identification of critical paths 

and decision points, aiding in the creation of comprehensive test cases that cover all 

possible combinations of conditions. 

2.1.5 Abstract Syntax Tree 
 

An Abstract Syntax Tree (AST) functions as a tree-shaped data structure that mirrors 

the abstract syntactic arrangement of source code composed in a programming 

language. It meticulously captures the hierarchical composition of the program and its 
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syntax, although it does not encapsulate semantic nuances. Within the AST, nodes 

correspond to language constructs such as expressions, statements, and declarations, 

while edges symbolize the interconnections between these constructs. This structural 

representation proves instrumental in numerous software development tools, including 

compilers, interpreters, static analyzers, and refactoring tools, as it facilitates a 

comprehensive understanding and manipulation of the program's syntactic 

organization without delving into its semantic intricacies (Liang, 2022). 
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CHAPTER 3 

 

RELATED WORKS 

In this chapter, we explore the existing body of knowledge and research that serves as the 

foundation for our work. We looked for the previously proposed solutions and found out 

the justification of our project. It is important to have a thorough understanding of the 

current state of the field in order to properly appreciate and put into context the 

advancements presented in this study. We delve into previous research and key findings 

that have helped shape and develop the subject matter over time. By critically examining 

relevant literature, we aim to identify gaps, challenges, and opportunities that motivate 

and guide the novel contributions presented in our work. This comprehensive review 

serves as a roadmap for readers, offering insights into the broader academic landscape and 

positioning our research within the larger context of ongoing scholarly discussions. 

3.1 Validating Object-Oriented Software At The Design Phase By Achieving 

MC/DC (Barisal, 2019):  

The method proposed in this paper is a technique for validating object-oriented software 

at the design phase by achieving MC/DC (Modified Condition/Decision Coverage). The 

method consists of the following steps: 

• Constructing a UML activity diagram for the given system using ArgoUML, a tool 

that supports various UML diagrams. 

• Generating XML code from the UML activity diagram using ArgoUML’s export 

function. 

• Converting the XML code to XSD (XML Schema Definition) code, which is a 

more precise and readable representation of the XML elements. 

• Generating a skeletal Java code from the XSD code using JAXB (Java 

Architecture for XML Binding), a tool that provides methods for binding XML 

schema and Java objects. 

• Customizing the Java code according to the syntax of jCUTE, a tool that performs 

concolic testing, which combines concrete and symbolic execution to generate test 

cases. 

• Applying jCUTE to the Java code to obtain test cases that cover all possible paths 

and outcomes of the program. 

• Calculating MC/DC percentage from the test cases and the Java code using 

COPECA (COverage Percentage Calculator), an in-house developed tool that uses 
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an Extended Truth Table to find independent conditions and a formula to compute 

the coverage score. 

 

The paper suggests a hybrid software verification technique that combines symbolic 

execution and concrete execution to generate test cases that aim to maximize code 

coverage. They have achieved 56.31% MC/DC coverage in their experiment. This 

solution is dependent on UML diagrams generated by third-party tools which may not be 

available for software engineers who work for automotive or aerospace industries. 

 

3.2 MCDC-Star A White-Box Based Automated Test Generation For High MC/DC 

Coverage (Wong, 2018 ): 

This paper proposes a white-box-based automated test case generation technique for 

achieving high modified condition/decision coverage (MC/DC) criterion using greedy-

based symbolic execution. 

The paper describes the following steps of the method: 

• Program Instrumentation and Compilation: The paper instruments the subject 

program to measure MC/DC and compiles it to obtain an executable. 

• Path Direction Generation: The paper analyzes the control flow of the subject 

program and constructs a path direction for each decision, which consists of a 

condition combination, an MC/DC improvement, and an assembly code execution 

sequence. 

• Test Generation Using Symbolic Execution: The paper uses Triton, a dynamic 

symbolic executor, to generate test input values that can follow the path directions 

with the highest MC/DC improvements. The paper also handles the issues of 

unreachable decisions and constraint conflicts. 

• Test Execution and MC/DC Measurement: The paper executes the generated test 

input values against the instrumented executable and updates the MC/DC coverage 

information using a branch-independent effect (BIE)-based approach. 

The paper claims that the method can achieve high MC/DC coverage faster and more 

effectively than a random method. 

The downside of their method is that it might change the program’s behavior, which limits 

its practicality. This is because they use code transformation-based symbolic execution 

techniques to generate test cases for achieving MC/DC. Code transformation is a process 

of modifying the source code of a program to make it easier to analyze or test. However, 

this process can introduce errors or alter the semantics of the original program, which can 
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affect the validity of the test results. Therefore, their method is not suitable for testing 

programs that have strict requirements on correctness and reliability. 

 

3.3 Automatic Test Data Generation For Unit Testing To Achieve Mc/Dc Criterion 

(Tianyong Wu, 2014 ): 

This method generates test data for MC/DC, a complex coverage criterion that considers 

the logical expressions in the branch statements of a program. This solution relies on third-

party tools to create test paths. 

A four-step process that involves: 

• Translating the target program into a Control Flow Graph (CFG). 

• Extracting Condition Level Test Paths (CLTPs) from the CFG using a greedy 

strategy to select the next condition vector for each decision. 

• Also, checking the feasibility of CLTPs and generating test data for the feasible 

and complete CLTPs using symbolic execution and constraint solving. 

• Reducing the CLTP set without decreasing the coverage using a Pseudo-Boolean 

Optimization (PBO) solver. 

• A prototype tool that implements the method and uses Clang, Z3, and clasp as 

external tools. 

The condition vector selection strategy in the proposed method is a greedy strategy that 

selects the next condition vector for each decision. The strategy selects the condition 

vector that covers the most uncovered conditions in the current CLTP (Condition Level 

Test-Path) and has the least number of constraints. The strategy also considers the 

feasibility of the selected condition vector and the coverage of the remaining CLTPs. The 

goal of the strategy is to reduce the number of constraint-solving calls and the size of the 

CLTP set without decreasing the coverage. 

 The effectiveness of the greedy strategy is evaluated in the experiments, and the results 

show that the greedy strategy can improve the efficiency and cost of the test data 

generation process. 

3.4 An Automated Tool for MC/DC Test Data Generation (Ariful Haque, 2014): 

 

The objective of this paper is to design and implement an automated tool for MC/DC test 

data generation, called MC/DC GEN. The tool takes a Boolean expression as input and 

produces a set of test cases that satisfy the MC/DC criterion. The tool uses a local search 
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algorithm to find all possible MC/DC pairs for each predicate in the expression and then 

removes the redundant pairs to generate the final test data. The tool also compares the 

effectiveness of MC/DC with a pairwise testing technique using a case study. 

The design and framework for MC/DC Gen is as follows: 

• MC/DC Gen is a web-based tool that can automatically generate test data for 

structural testing based on the Modified Condition/Decision Coverage (MC/DC) 

criterion. 

• MC/DC Gen is developed using PHP programming language and hosted in a 

Linux-based Virtual Private Server. 

• MC/DC Gen consists of five main components: input processing and analysis, 

generating a list of solutions, MC/DC pairs with predicates, generating the final 

test data, and case study. 

• Input processing and analysis: The user inputs the Boolean expression of the 

predicate to be tested according to the MC/DC Gen standard notation. The tool 

separates the predicates, operators, and grouping notation from the expression and 

keeps a pointer to match them correctly. 

• Generating a list of solutions: The tool starts with a local search to find all possible 

solutions for the separated predicates. It randomly chooses an initial solution and 

computes its result. It then seeks for a neighbor solution that differs only by the 

value of one predicate but gives a different result for the expression. This is called 

an MC/DC pair and is stored in an array. The search continues until all the 

predicates are searched completely. 

• MC/DC pairs with predicates: The tool populates a table with predicates in 

columns and a list of identified MC/DC pairs for each predicate in rows. This 

representation gives an overall view of the identified solutions. 

• Generating the final test data: The tool removes the duplication test data from the 

previous step and generates the actual MC/DC pairs from the combination of pairs. 

 

MC/DC GEN's web-based nature may hinder accessibility in restricted environments, 

and its exclusive reliance on PHP limits language support, posing challenges for 

projects in other languages. These downsides underscore the importance of 

considering infrastructure dependencies and language flexibility when opting for 

automated MC/DC test data generation tools like MC/DC GEN. 

3.5 Comparing Pathfinder With Related Works 

 

In this section, we draw comparisons between Pathfinder, our automated test case 

generation tool, and the existing works discussed in Chapter 3. Each tool contributes to 
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the realm of achieving Modified Condition/Decision Coverage (MC/DC) in software 

testing, but distinctive features and methodologies set them apart. 

 

3.5.1 Validating Object-Oriented Software at the Design Phase (Barisal, 2019): 
Similarities: 

• Both approaches aim to achieve MC/DC coverage in the software testing 

process. 

• Both tools utilize a combination of techniques, including symbolic execution, to 

generate test cases. 

Differences: 

• Pathfinder focuses on the automation of test case generation specifically for C 

language source codes, while Barisal's method targets object-oriented software 

using UML diagrams. 

• Pathfinder employs a comprehensive process from source code parsing to 

expected result generation, whereas Barisal's method relies on UML diagrams 

and tools like ArgoUML and jCUTE. 

 

3.5.2 MCDC-STAR (Wong, 2018): 
Similarities: 

• Both tools are designed to achieve high MC/DC coverage. 

• Both utilize symbolic execution in their methodologies. 

Differences: 

• Pathfinder concentrates on C language source codes, while MCDC-STAR is a 

white-box-based automated test case generation tool written in Java. 

• MCDC-STAR introduces the possibility of altering the program's behavior due 

to code transformation, a concern not present in Pathfinder. 

 

3.5.3 Automatic Test Data Generation for Unit Testing (Tianyong Wu, 2014): 
Similarities: 

• Both tools aim for MC/DC coverage in unit testing. 

• Both employ symbolic execution and constraint-solving in their processes. 

Differences: 

• Pathfinder is tailored for C language source codes, whereas Tianyong Wu's 

method is more generic and can be applied to various programming languages. 
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• Tianyong Wu's method uses a greedy strategy for condition vector selection, 

which is not explicitly employed in Pathfinder. 

 

3.5.4 Automated Tool for MC/DC Test Data Generation (Ariful Haque, 2014): 
Similarities: 

• Both tools are designed to generate test data for achieving MC/DC coverage. 

• Both emphasize automated processes in test data generation. 

Differences: 

• Pathfinder specifically targets C language source codes, while MC/DC GEN is 

developed for PHP. 

• MC/DC GEN utilizes a local search algorithm, contrasting with Pathfinder's 

approach, which employs a combination of parsing, CFG generation, and test 

path generation. 

 

In summary, while all the discussed tools, including Pathfinder, share the common goal 

of achieving MC/DC coverage, the differences in their target languages, methodologies, 

and underlying techniques highlight the unique contributions of each tool. Pathfinder 

stands out for its tailored approach to C language source codes and its comprehensive, 

automated process from source code parsing to expected result generation. 
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CHAPTER 4 

 

PATHFINDER 

In this section, we explain the details of PathFinder, our tool designed to automate the 

generation of comprehensive test cases for C language source codes, with a particular 

focus on fulfilling the Modified Condition/Decision Coverage (MC/DC) criteria. The 

methodology unfolds in a series of well-defined steps, each explained within dedicated 

sections. Beginning with the foundational step of parsing the source code (Section 4.1), 

we progress through the creation of a Control Flow Graph (CFG) (Section 4.2), the 

identification of decisions and conditions (Section 4.3), and the systematic generation of 

test paths (Section 4.4). The significance of finding expected results in software testing is 

explored in Section 4.5, underscoring its crucial role. A comprehensive summary of the 

entire PathFinder process is presented in Section 4.6, highlighting the interconnected 

modules that collectively enhance the efficiency and effectiveness of software testing. 

However, before delving into these detailed steps, we acknowledge and address the 

challenges encountered during the implementation of PathFinder in Section 4.7.  

 

4.1 Parse Source Code 

The proposed method ParseSource’s implementation uses the Python programming 

language to parse C language source codes to extract decision structures, conditions, and 

related information. Once parsed, the tool generates comprehensive test cases that fulfill 

the MC/DC criteria. Leveraging Python’s flexibility and powerful parsing libraries, we 

aim to automate the generation of test cases, reducing the manual effort involved in 

creating exhaustive test suites. 

We chose the C programming language because C is one of the most used programming 

languages in safety-critical industries such as automotive and aerospace. Many embedded 

systems and firmware in these domains are written in C. Hence, this project directly 

addresses the testing needs of a significant portion of safety-critical applications. 

Moreover, several safety-critical systems have legacy codebases written in C. By 

supporting C, our project caters to the need for compatibility with existing systems. 

Moreover, industry standards often prescribe the use of C in safety-critical software 

development, reinforcing the relevance of our tool in such environments. 
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Parsing is essential for the extraction of decision structures, conditions, and related 

information, crucial elements for fulfilling the MC/DC criteria in test case generation. For 

the parsing algorithm a sample code, ParseSource, is given in Figure 3. 

The ParseSource class assumes a central role within PathFinder by specializing in the 

critical task of parsing C code into a structured representation. Its primary responsibility 

lies in extracting information from the Abstract Syntax Tree (AST), a fundamental data 

structure that captures the hierarchical structure of the parsed code. The class performs 

this operation through its core method, parse(), which parses the C source code and 

populates the AST with relevant details. By focusing on the extraction of decision 

structures, conditions, and other essential elements, the ParseSource class transforms raw 

C code into an interpretable structured representation. 

 

Figure 3 ParseSource Class – Parsing Algorithm 

The sample code given in Figure 3, starts with import statements and includes the 

following methods: 

• parse():  Parses the C source code and stores the AST 

• get_statements():  Extracts all statements from the AST 

• get_conditions(): Extracts all conditional expressions from the AST. 
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• get_control_structures(): Extracts all control structures (if, while, for) from the 

AST. 

 

4.2. Create Control Flow Graph 

 

Creating a Control Flow Graph (CFG) is important for several reasons. A CFG provides 

a visual representation of the flow of control within the code. This is valuable for 

understanding the overall structure of the program, including loops, conditions, and 

branching.  

MC/DC coverage requires identifying conditions and decisions in the code. The CFG 

makes it easier to pinpoint these elements, aiding in the creation of test cases that cover 

all possible combinations. 

MC/DC coverage mandates thorough testing of conditions and decisions in the code. The 

CFG serves as a powerful tool for achieving this coverage by making it easier to pinpoint 

these elements. Test cases derived from CFG analysis can systematically cover different 

paths, ensuring that all possible combinations of conditions are exercised. 

CFG aids in identifying and visualizing potential paths through the code, enabling testers 

to analyze and verify the correctness of the program's logic. It also facilitates the detection 

of unreachable or redundant code, contributing to code quality and maintainability. 

The code excerpt given in Figure 4, ControlFlowGraph, illustrates the CFG generation 

algorithm. The ControlFlowGraph class assumes a pivotal role in PathFinder by standing 

for a control flow graph (CFG) of the source code. The primary responsibility of this class 

is to visually capture and articulate the flow of control within the code. Achieved through 

the build_graph() method, the CFG serves as a graphical representation, elucidating the 

program's overall structure, encompassing loops, conditions, and branching. 
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Figure 4 ControlFlowGraph Class -  CFG Generation Algorithm 

The excerpt code given in Figure 4, includes the following methods that build a 

comprehensive CFG representation, aiding in the generation of exhaustive test suites that 

adhere to MC/DC criteria: 

• build_graph(): Builds the CFG by creating nodes and edges based on the 

provided statements, conditions, and control structures. 

• add_node():  Adds a node to the CFG with the given statement. 

• get_graph():  Returns the CFG representation as a tuple of (nodes, edges) 

• find_successors(): Returns a list of node IDs that are directly reachable from the 

given node. 

• find_predecessors(): Finds the predecessor nodes that can directly reach a given 

node. 
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• find_entry_points(): Identifies nodes without any incoming edges (potential 

starting points). 

• find_exit_points(): Identifies nodes without any outgoing edges (potential ending 

points). 

4.3 Identify Decisions and Conditions 

 

Identifying and thoroughly testing decision points and conditions within the source code 

is a crucial responsibility of PathFinder, facilitated by the functionalities within the 

Identify Decisions and Conditions phase. This phase serves as a bridge between the 

parsing capabilities of the ParseSource class and the graphical representation provided by 

the ControlFlowGraph class. 

The identification and parsing of branches contribute to the creation of a map of possible 

execution paths, enabling the PathFinder to cover all conceivable scenarios and ensuring 

the reliability and robustness of safety-critical applications in the face of diverse 

operational conditions. 

The primary responsibility in this phase is to identify decision points (branches) within 

the Control Flow Graph (CFG). The class definition given in Figure 5, DecisionIdentifier, 

ensures that decision points and conditions are accurately identified and analyzed. The 

systematic traversal of paths and parsing of branches contribute to the creation of a 

detailed understanding of the program's decision-making structures. 

The sample code given in Figure 5, includes the following methods: 

• identify_branches(): Identifies branches within the CFG and returns a dictionary 

mapping decision points to their associated branch path. 

• parse_branches():  Parses branches for a given decision point and returns a list 

of branch paths. 

• traverse_path(): Recursively traverses a path through the CFG, adding 

statements to the branch_path list. 
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Figure 5 DecisionIdentifie Class - Decision Identifying Algorithm 

4.4 Generate Test Paths 

The core of the PathFinder tool lies in its ability to systematically generate test paths that 

fulfill the MC/DC criteria. Once the decision points and conditions are identified through 

the ControlFlowGraph and DecisionIdentifier phases, the Generate Test Paths phase takes 

center stage. This phase is responsible for exploring and generating all possible test paths 

within the Control Flow Graph (CFG) to ensure comprehensive coverage. 

The algorithm in Figure 6, TestPathGenerator, outlines the process of generating test 

paths. The TestPathGenerator class encapsulates the functionality for generating test 

paths, utilizing the depth-first search (DFS) approach to systematically traverse the 

Control Flow Graph (CFG). The recursive nature of the DFS ensures that all possible paths 

are explored, considering decision points and conditions at each step. The generated test 
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paths represent diverse scenarios, fulfilling the MC/DC coverage criteria and providing a 

comprehensive set of test cases for software testing. 

The TestPathGenerator has the following methods: 

• generate_expected_results():  Generates expected results for all test paths. 

• calculate_results_for_path(): Calculates expected results for a single test path. 

• Satisfies_coverage(): Checks if a given path satisfies the specified coverage 

criteria. 

 

 

Figure 6  TestPathGenerator Class - Test Path Generation Algorithm 

In summary, the TestPathGenerator class serves as a pivotal component in the PathFinder, 

offering a systematic approach to generate test paths that adhere to the specified coverage 

criteria, with a particular focus on MC/DC Coverage. Leveraging recursive exploration 
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and decision-point analysis, the algorithm navigates through the Control Flow Graph 

(CFG), producing diverse test paths that comprehensively cover the program's logical 

flow. The satisfaction of MC/DC coverage criteria is rigorously checked, ensuring that 

each decision point and condition undergoes thorough testing. 

4.5. Find Expected Results 

The expected result is crucial in software testing because it serves as a predefined 

benchmark against which the actual outcomes of test cases can be compared. It provides 

a definitive target or anticipated behavior for a given set of inputs, allowing testers to 

verify whether the software functions as intended.  Testers compare the actual outcomes 

of test cases with the expected results to identify any discrepancies or deviations from the 

intended behavior. 

Any disparities between actual results and expected outcomes indicate potential defects 

or issues in the software. 

Especially, in the absence of formal requirements, finding expected results during testing 

becomes a critical navigational tool for software testers. Without predefined 

specifications, the process of determining expected outcomes involves a careful 

examination of the software's behavior under various inputs and scenarios. The act of 

finding expected results in such scenarios aids in uncovering defects. 
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Figure 7 ExpectedResultGenerator Class: Expected Result Algorithm 

In this context, ExpectedResultGenerator class shown in Figure 7, systematically 

generates expected results for a given set of test paths. This critical functionality is based 

on the analysis of the Control Flow Graph (CFG), ensuring that the expected outcomes 

for each test path are accurately determined. 

ExpectedResultGenerator has the following methods:  

• generate_expected_results():  Generates expected results for all test paths. 

• calculate_results_for_path(): Calculates expected results for a single test path. 

 

In essence, the "Find Expected Result" section plays a pivotal role in enhancing the depth 

and accuracy of software testing. Through systematic analysis and calculation, it ensures 

that the expected results align with the specified coverage criteria, providing software 



24 

 

 

engineers with valuable insights into the performance and reliability of their code under 

diverse scenarios. 

4.6. Summary Of Pathfinder Process 

 

The test automation process within the PathFinder comprises several interconnected 

modules, each playing a distinct role in enhancing the efficiency and effectiveness of 

software testing. From the initial parsing of the source code to the systematic generation 

of expected results, the process unfolds in a structured manner. 

The journey begins with the Parse Source Code module (4.1), where the C language source 

code is analyzed to extract decision structures, conditions, and related information. This 

parsed information forms the foundation for subsequent analysis. 

Following this, the Create Control Flow Graph module (4.2) steps in to construct a visual 

representation of the program's control flow. The Control Flow Graph (CFG) serves as a 

roadmap for identifying conditions, decisions, and potential paths, laying the groundwork 

for comprehensive test coverage. 

In the Identify Decisions and Conditions phase (4.3), the tool systematically identifies 

decision points and conditions within the CFG, creating a map of possible execution paths. 

This critical step facilitates a detailed understanding of the program's decision-making 

structures. 

The Generate Test Paths module (4.4) takes center stage as it dynamically explores the 

CFG, systematically generating diverse test paths that adhere to the Modified 

Condition/Decision Coverage (MC/DC) criteria. Through recursive depth-first search, the 

algorithm ensures comprehensive coverage of decision points and conditions. 

Transitioning to the Find Expected Result section (4.5), the tool calculates and generates 

expected results for each test path. This process involves both the systematic calculation 

of outcomes for individual paths and the holistic generation of expected results for the 

entire set of test paths. 

In summary, the summarized test automation process encapsulates the journey from 

code parsing to the generation of expected outcomes. This organized approach improves 

the effectiveness of software testing, offering a strong structure for identifying problems, 

confirming accuracy, and guaranteeing the dependability of software in various 

situations. The interconnected nature of these modules contributes to the overall 

effectiveness of the PathFinder in empowering software engineers to deliver high-

quality, reliable software products. 
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4.7. Challenges of Pathfinder 

The implementation of the PathFinder encountered several challenges, each posing 

distinctive hurdles in achieving seamless and efficient test automation. These challenges 

spanned various aspects of the development process and are outlined below: 

• Complexity of C Language:  

 

The inherent complexity of the C programming language posed a significant 

challenge in code analysis. Navigating through the multitude of language 

constructs, intricate syntax, and addressing edge cases demanded a sophisticated 

approach. Ensuring that the tool effectively handles diverse coding styles and 

constructs was a critical challenge, requiring attention to detail during the code 

analysis phase. 

• Parsing Challenges: 

 

The presence of preprocessor directives, macros, and complex declarations in C 

code introduced parsing challenges. The variability introduced by these elements 

required the development of robust parsing mechanisms to accurately extract 

decision structures and conditions. Overcoming the intricacies of preprocessor 

directives and handling complex macro expansions emerged as a formidable task 

in achieving precise code analysis. 

• Handling Large Codebases: 

 

As the tool aimed to be applicable to real-world scenarios, handling large 

codebases became a pivotal challenge. The complexities introduced by multiple 

files, interdependencies, and diverse project structures necessitated the 

development of scalable mechanisms. Ensuring that the tool maintains efficiency 

and accuracy in the face of extensive codebases posed a constant challenge 

throughout the implementation process. 

• Python Performance Limitations: 

 

The performance limitations of the Python programming language became evident 

when dealing with extensive codebases. Parsing and generating test paths for large 

codes presented time-intensive processes, impacting the overall efficiency of the 

tool. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

In this report, we introduced Pathfinder, an automated tool designed to streamline the 

generation of comprehensive test cases for C language source codes, with a specific focus 

on fulfilling the Modified Condition/Decision Coverage (MC/DC) criteria. The 

methodology presented in Pathfinder unfolds through a structured series of steps, 

including source code parsing, control flow graph (CFG) creation, decision and condition 

identification, test path generation, and determination of expected results. 

Pathfinder's foundation lies in its ability to parse C language source codes, extract decision 

structures, and systematically generate test paths that adhere to MC/DC criteria. 

Leveraging Python's parsing capabilities and powerful libraries, the tool aims to reduce 

manual effort and enhance the efficiency of test case generation. 

The creation of a CFG provides a visual representation of the code's control flow, aiding 

in the identification of decision points and conditions crucial for MC/DC coverage. The 

systematic generation of test paths, facilitated by the TestPathGenerator, ensures thorough 

coverage of decision points and conditions. Additionally, the identification and parsing of 

branches, as handled by the DecisionIdentifier, contribute to the creation of a detailed map 

of possible execution paths. 

The Find Expected Results module plays a pivotal role in software testing, systematically 

generating expected outcomes for each test path. This process is crucial in evaluating the 

correctness and reliability of the code under diverse scenarios. 

As Pathfinder evolves, several avenues for future enhancements emerge to augment its 

capabilities and address potential limitations. Looking ahead, Pathfinder's future work 

involves enhancing support for more C language features, including complex expressions, 

function calls, and arrays. Additionally, external function analysis is proposed to analyze 

calls and potential impacts on variable values, contributing to more accurate result 

prediction. The integration of machine learning models is also considered, aiming to 

improve prediction accuracy and handle more complex code constructs. 

 Enhanced Support for C Language Features: 

While Pathfinder is currently capable of parsing and analyzing decision structures in C 

language source codes, future development could extend its capabilities to encompass a 

broader range of language features. This includes the incorporation of more complex 

expressions, function calls, and arrays, enabling Pathfinder to generate test cases that 

account for a wider spectrum of C language constructs. This expansion would contribute 

to a more comprehensive and adaptable testing solution. 
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External Function Analysis: 

To enhance the precision of Pathfinder's test case generation, an area of potential 

improvement involves the analysis of external functions. If the parsed code interacts with 

external functions, future iterations of Pathfinder could incorporate mechanisms to 

analyze these calls and assess their potential impact on variable values within the program. 

This additional layer of analysis would contribute to a more accurate prediction of results, 

particularly in scenarios where external functions influence the program's behavior. 

Machine Learning Integration: 

To harness the power of predictive modeling and further refine its test case generation, 

Pathfinder could explore the integration of machine learning models. By leveraging 

machine learning algorithms trained on extensive datasets of program behavior, 

Pathfinder might enhance its prediction accuracy. This integration could prove especially 

beneficial when handling intricate code constructs and adapting to diverse programming 

styles. The utilization of machine learning could contribute to a more intelligent and 

adaptive test case generation process. 

The envisioned future work for Pathfinder revolves around expanding its language 

feature support, delving into external function analysis for more precise predictions, and 

exploring the integration of machine learning models to enhance overall accuracy and 

adaptability. These potential advancements aim to position Pathfinder as a more 

versatile and sophisticated tool, catering to the evolving landscape of software 

development and testing practices. 

In conclusion, Pathfinder represents a valuable contribution to the field of automated test 

case generation, offering a systematic and adaptable approach. Its structured 

methodology, combined with potential future enhancements, positions Pathfinder as a 

versatile tool to aid software engineers in delivering high-quality, reliable software 

products. As software development continues to evolve, Pathfinder stands as a testament 

to the ongoing pursuit of effective and intelligent testing solutions. 
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